Advances in systems for identification and diagnosis of *Phytophthora*, *Pythium* and related genera

Frank Martin
USDA-ARS, Salinas, CA
Identification of Isolates

- Challenges of morphological identification
 - Level of expertise needed
 - Not all isolates produce necessary structures
 - Overlap of morphological features
 - Convergent evolution
 - Time necessary
Molecular Identification

- Generally takes less time
- Less subjective for identification
- Can sometimes differentiate isolates below the species level.
Desired Marker Characteristics

• Look for a single region that is conserved within a species but variable between species.
• Have conserved sequences flanking variable region
• Amplicon size suitable for real-time PCR
• High copy number
Molecular Loci Used for Species Identification

- Nuclear
 - rDNA
 - β-tubulin
 - Elicitin, cellulose binding elicitor lectin
 - Translation elongation factor 1 α
 - Ypt1 gene
 - Elicitin gene \textit{par1}, putative storage protein \textit{Lpv}
 - 60S Ribosomal protein L10, enolase, heat shock protein 90, TigA gene fusion protein
Molecular Loci Used for Species Identification - Nuclear

• Nuclear
 – Multiple copy
 • rDNA – ITS region most commonly used for
 – sequence based ID (good representation in GenBank)
 – As source of sequences for designing species-specific markers
 – “Single” copy
 • Translation elongation factor 1 alpha – phylogeny
 – Kroon et al. 2004, Blair et al. 2008
 • β-tubulin – phylogeny and molecular diagnostics
 • Elicitin, cellulose binding elicitor lectin – molecular diagnostics
 – Bilodeau et al. 2007a, b
 • Ypt1 gene – molecular diagnostics
 – Schena et al. 2006, 2007
 • Elicitin gene par1, putative storage protein Lpv
 – Kong et al. 2003a, b
 • 60S Ribosomal protein L10, enolase, heat shock protein 90, TigA gene fusion protein – phylogeny
 – Blair et al. 2008
rDNA Organization

For Pythium species with spherical sporangia/hyphal swellings the 5 S rDNA is dispersed as an array in other regions of the genome
•Spacer regions between copies useful for species-specific markers

Cistron present in multiple copies in head to tail array
Ypt1 Gene Species-Specific Diagnostic Markers
Genus-specific primers and 15 species-specific

From Schena et al. 2007
Molecular Loci Used for Species Identification - Mitochondrial

Mitochondrial – multiple copy

- *cox1* – phylogeny and molecular diagnostics
 - Kroon et al. 2004a, b, Levesque et al. (bar code, personal comm.)

- *cox2* – phylogeny

- *cox1* and *cox2* spacer – molecular diagnostics
 - Martin et al. 2004, Tooley et al. 2006

- *nad1* – phylogeny
 - Kroon et al. 2004

- *nad5* – phylogeny
 - Ivors et al. 2004
Nuclear vs Mitochondrial Markers

• Mitochondria are uniparentally inherited from maternal parent
• Copy number may change depending on physiological status of the pathogen, so may not be best for quantification
Copy Number vs Sensitivity

• Multiple copy vs “single” copy
 – Similar \(C_t \) in real-time PCR for \(P. \) ramorum using ITS and elicitin markers,
 • The \(C_t \) for both these loci averaged 3.7 lower than \(\beta \) tubulin
 – Bilodeau et al. 2007, unpublished

• Consistency for rDNA copy number
 – In \textit{Pythium}, rDNA hybridizes to different number of chromosomal bands in PFGE
 • different hybridization intensity relative to other “single” copy probes as well.
 – Different real-time PCR \(C_t \) observed for various isolates of \(P. \) infestans when normalized to \(C_t \) of “single” copy loci (Z. Atallah, personal comm.)
Techniques Used for Molecular Identification

• Techniques used are dependent on the type of analysis that is needed
 – Identification of isolates to species level that have been cultured
 – Identification of isolates from field samples
 – Identification of a particular species of regulatory importance from field samples
 – Identification of subpopulations within a species
Molecular Techniques for Isolate Identification

- **DNA sequencing**
 - Specific genes for ID and phylogenetic analysis
 - *Pythium*
 - Nuclear – ITS, large ribosomal subunit, β tubulin,
 - Mitochondrial – *cox1*, *cox 2*
 - *Phytophthora*
 - Nuclear – ITS, β tubulin, translation elongation factor 1 α, elicitin, 60S Ribosomal protein L10, enolase, heat shock protein 90, TigA gene fusion protein, Ypt1
 - Mitochondrial – *cox1*, *cox2*, *nad1*, *nad5*
 - Molecular tool box for identification and characterization of *Phytophthora* spp.
 - 4 mtDNA intergenic regions, a portion of the rDNA-IGS, a portion of *Ypt1* (a ras related protein).
 - Schena and Cooke 2006
Molecular Techniques for Isolate Identification

• Micro/macro arrays
 – Identification of isolates to species level
 • Reverse dot blot – Levesque et al. 1998
 • Reviewed in Lievens and Thomma 2005
 – Use single nucleotide polymorphisms (SNPs) on array to identify subpopulations
Molecular Techniques for Isolate Identification

• Single Strand Conformational Polymorphism
 – SSCP of ITS sequences - Both *Pythium* and *Phytophthora* spp.
 • C. Hong’s lab at VPI (2003 – 2005)
 • Automated sequencer for *Phytophthora* ID
 – Tom Kubisiak, USDA Forest Service, MS (unpublished)
 – SSCP with *cox* spacer region for *Phytophthora* spp.
 • E. Hansen (unpublished)
PCR-RFLP for Isolate Identification

• RFLP analysis of PCR amplified fragments
 – ITS region of the rDNA
 • *Phytophthora* – David Cooke (PhytID)
 • *Pythium* – Chen et al. 1992, Wang and White 1997
 – MtDNA
 • *cox* 1 and 2 gene cluster
 – *Phytophthora* - Martin and Tooley 2004
 – *Pythium* – Martin (unpublished)
 • Spacer between *cox* 1 and 2 genes
 – *Phytophthora* - Martin (unpublished)
RFLP Analysis for ID of *Pythium* spp.

- Similar in approach to *Phytophthora* RFLP analysis
 - Different primers used
 - Amplicon a little more than half the size of the *Phytophthora* amplicon

- Tested on over 160 isolates representing 40+ species
 - Clearly delineated species
 - Limited intraspecific variation
|---------------|---------------|-------------------|---------------|--------------|-------------|-------------------|-------------------------|-----------------------|------------------------|------------------|----------|---------|-----------|----------|

Alu1
Phytophthora genus-specific Amplification

cox 2
spacer
cox 1

Phy-8b
Phytophthora
Phy-10b

Approximately 450-500 bp

Primers amplify *Phytophthora*, but not the *Pythium* and plant species tested

• Analysis can be done directly on amplifications from infected tissue
RFLP Analysis of * Phytophthora * Genus-specific Amplicon for Species ID
Molecular Techniques for Identification of Subpopulations

- RAPDs
- AFLPs
 - *Phytophthora*
 - Lamour and Hausbeck 2001, Ivors et al. 2004
 - *Pythium*
 - Garzon et al. 2005a, b
- Inter simple sequence repeats (ISRR)
 - *Pythium*
 - Vasseur et al. 2005
- Microsatellites
 - *Phytophthora*
 - *Pythium*
 - Lee and Moorman 2007
- Micro/macro arrays to identify SNPs
- Mitochondrial haplotypes
 - *Phytophthora infestans*
Species-Specific PCR for Pathogen Detection

- Conventional vs real-time PCR
 - Due to less sensitivity and the time necessary for running the sample conventional PCR less common in diagnostic setting
- Important to have multiplexed
 - Plant marker as internal control for DNA extraction
 - Genus-specific marker is desirable
- Different chemistries for real-time PCR
 - TaqMan – perhaps most common
 - Scorpion – need less time to run cycle than TaqMan, so need less time to complete assay
 - Molecular beacons
Approaches to Enhance Specificity

• Nested amplification
 – Advantage that in also increases sensitivity
 – Disadvantage that it adds a few steps and has more opportunities for errors

• Locked nucleic acids
 – Allows higher annealing temperatures to be used

• Padlocked probes
 – Szemes et al. 2005

• Analysis of hybridization melt kinetics
 – Anderson et al. 2006
Padlock Probes to Improve Specificity

T1, T2 – species-specific sequences

P1, P2 – forward and reverse primers

Zip – sequences generated to be species-specific for TaqMan probe

Szemes et al. 2005
Considerations when starting to use PCR markers reported in the literature

• At least initially try using exact procedures reported
• Validate technique in your lab
 – Amplification conditions
 – Block uniformity
Loop Mediated Isothermal Amplification

- Reported as diagnostic for *Phytophthora ramorum*
 - Tomlinson et al. 2007
- Does not require a thermal cycler (just a temperature controlled block)
- Can visualize results
 - On a gel by electrophoresis
 - Intercalation of a dye
 - Increased turbidity (production of Mg pyrophosphatase)
 - Real-time PCR
- Some limitations
 - Less sensitive than TaqMan assay (10 pg vs 250 fg)
 - Commonly used dye has to be added at the end of the reaction as it inhibits the reaction
Using Mitochondrial Sequences for a Systematic Approach for Marker Development

• See more sequence variation than in many nuclear regions
• Target has high copy number
• Want to identify region where variable sequences are flanked by conserved sequences to simplify marker development for additional species
• Use in conjunction with plant and *Phytophthora* genus specific markers
Phytophthora ramorum

Multiplex Amplification

First Round Amplification

\[cox \text{ II} \quad \text{spacer} \quad cox \text{ I} \]

[Diagram showing the first round amplification process with Phytophthora and Plant at the ends and an intermediate spacer.]

Second Round Amplification

\[P. \text{ ramorum} \]

[Diagram showing the second round amplification process with Phytophthora and P. ramorum at the ends.]

Additional details: http://www.ars.usda.gov/Research/docs.htm?docid=8728
Genomic Sequencing of the MtDNA for Marker Development

- Rather than looking at individual sequences one at a time, will approach this by looking at genomic sequences of the mitochondrial DNA
 - Identify conserved/variable regions to focus on
 - Look for gene order differences with related genera and plants to enhance specificity of the markers
Mitochondrial Genome Sequencing

- *Pythium* spp.
 - 15 species
 - 18 genomes
 - 2 isolates for 3 species to evaluate intraspecific variation

- *Phytophthora* spp.
 - 12 species
 - 13 genomes
 - 2 isolates of 1 species to evaluate intraspecific variation
Mitochondrial Genome Organization

- Circular orientation
 - Some *Pythium* spp. have linear genomes
- Inverted repeats?
 - Yes – *Pythium*, *Saprolegnia*, *Achlya*, *Aplanopsis*, *Leptolegnia*, *Saparomyces*
 - No – *Phytophthora*
 - Small inverted repeat (< 1.5 kb) present in *P. ramorum* and *P. hibernalis*
Pythium mtDNA

Inverted Repeat

Single Copy Region
Linear Mitochondrial Genomes of *Pythium* spp.

• Occur as concatamers
• Found in all species examined
 – For most species linear arrangements are present in very low amounts
• Termini correspond to the small unique region
• Termini have hairpin loop
Genome Sizes for *Pythium* spp.

<table>
<thead>
<tr>
<th>Species</th>
<th>Small Unique(^a)</th>
<th>Inverted Repeat(^a)</th>
<th>Large Unique(^a)</th>
<th>Genome Size One arm IR(^a)</th>
<th>Genome Size Total(^a)</th>
<th>% Genome IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. catenulatum</td>
<td>2,704</td>
<td>24,964</td>
<td>10,253</td>
<td>37,921</td>
<td>62,885</td>
<td>79.4</td>
</tr>
<tr>
<td>P. graminicola</td>
<td>7,280</td>
<td>27,611</td>
<td>9,915</td>
<td>44,806</td>
<td>72,417</td>
<td>76.3</td>
</tr>
<tr>
<td>P. heterothallicum</td>
<td>3,368</td>
<td>21,269</td>
<td>13,066</td>
<td>37,703</td>
<td>58,972</td>
<td>72.1</td>
</tr>
<tr>
<td>P. myriotylum</td>
<td>3,900</td>
<td>28,342</td>
<td>12,148</td>
<td>44,390</td>
<td>72,732</td>
<td>77.9</td>
</tr>
<tr>
<td>P. nunn</td>
<td>3,304</td>
<td>22,346</td>
<td>13,103</td>
<td>38,754</td>
<td>61,100</td>
<td>73.1</td>
</tr>
<tr>
<td>P. oligandrum</td>
<td>1,372</td>
<td>30,911</td>
<td>10,291</td>
<td>42,574</td>
<td>73,485</td>
<td>84.1</td>
</tr>
<tr>
<td>P. sylvaticum</td>
<td>3,395</td>
<td>20,599</td>
<td>13,102</td>
<td>37,096</td>
<td>57,695</td>
<td>71.4</td>
</tr>
<tr>
<td>P. ultimum</td>
<td>2,711</td>
<td>21,954</td>
<td>13,068</td>
<td>37,733</td>
<td>59,687</td>
<td>73.6</td>
</tr>
</tbody>
</table>

\(^a\)Sizes in bp
Phytophthora Mitochondrial Genome Organization

• Lack an inverted repeat
 – Exceptions
 • *P. megasperma*, less than 0.9 kb based on Southern analysis (Schumard-Hudspeth and Hudspeth 1990)
 • *P. ramorum*, 1,150 bp (Martin et al. 2007)
 • *P. hibernalis*, ca. 1,500 bp
• Has the same genes found in *Pythium*
 – Some differences in ORFs
• Differences in gene order
Phytophthora ramorum

Length: 39,314 bp
37 genes
26 tRNAs for 19 AA
7 ORFs, 1 unique

Inverted Repeat
-1,150 bp in length
-Includes 528 bp ORF
Is gene order related to phylogenetic relationships in *Phytophthora*?

- While some differences in gene order may be associated with phylogenetic relationships, many are not.
- Interspecific comparisons of genomes reveals some regions are more variable than others
 - Gene order in some regions highly conserved in genus
Development of New Marker System for *Phytophthora*

- Two conserved differences in gene order compared to *Pythium* have been identified.
- Both regions have been sequenced in 90+ isolates representing 60+ species to assess intra- and interspecific variation.
- One region has been selected for further study based on the sequence data
 - Interspecific polymorphisms
 - Intraspecific sequence conservation
 - %GC of sequences
Phytophthora Multiplex Amplification

Phytophthora amplicon
ca. 190 bp

Gene order differences between *Phytophthora* and *Pythium*
- also with plant mtDNA from GenBank search
Phytophthora Multiplex Amplification

Phytophthora amplicon
ca. 190 bp

Phytophthora TaqMan Probe

Species-specific TaqMan Probe
Mitochondrial Haplotype Determination

• Can intraspecific variation be used as haplotype markers to differentiate isolates?
 – *P. infestans* – Ia, Ib, IIa, IIb

• Are there specific places in the genome that are more prone to variation to simplify looking for haplotype markers from a wider number of species?
 – Genomic rearrangements leading to intraspecific differences in gene order tend to occur at specific places. Is this also a region more prone to intraspecific variation as well?
Phytophthora ramorum Mitochondrial Haplotypes

• Is there intraspecific variation in the sequences of the mitochondrial genome that can be used to assign haplotype?
 • Kroon et al. – SNP in cox1 gene

• If so, can they be used as a marker to help monitor populations of the pathogen?

Phytophthora ramorum

Intraspecific Sequence Conservation

- California vs European mtDNA genomic sequence
 - 13 single nucleotide polymorphisms
 - 1 insertion of 180 bp
- Additional polymorphisms when looking at 40 other isolates
 - 15 new SNPs
Evaluation of Mitochondrial Haplotypes

• Identification of SNPs
 – Designed primers to amplify and sequence regions that are variable in comparisons between the US and EU mt genomes.
 – Looked at other regions that were polymorphic in comparisons among other species.

• Determination of haplotypes
 – Total of 7,496 bp (or 19% of the genome) examined
 – Looked at 40 isolates from geographically diverse areas
P. ramorum Mitochondrial Haplotype

<table>
<thead>
<tr>
<th>Marker</th>
<th># Variable Bases</th>
<th>mtDNA Haplotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prv-9</td>
<td>1</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II - US, III – Washington Nursery</td>
</tr>
<tr>
<td>ymf-16</td>
<td>2</td>
<td>I – EU, III – Washington Nursery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II - US</td>
</tr>
<tr>
<td>cox2 + spacer</td>
<td>3</td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = II</td>
</tr>
<tr>
<td>Prv-1</td>
<td>2</td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = II</td>
</tr>
<tr>
<td>Prv-8</td>
<td>2</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II - US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td>Prv-11</td>
<td>2</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II - US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td>Prv-13</td>
<td>8</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II – US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td>cox1</td>
<td>4</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II – US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III – Washington Nursery</td>
</tr>
<tr>
<td>Prv-14</td>
<td>4</td>
<td>I – EU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIa – US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIb – Oregon forest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III – Washington Nursery</td>
</tr>
</tbody>
</table>
Non-Sequence Based Haplotype Determination

• Melt curve analysis of amplicons
 – Using the Idaho Technology Light Scanner
 – Redesigned the amplification primers so a smaller amplicon was generated (for the most part less than 200 bp)
P. ramorum Mitochondrial Haplotype Melt Curve Analysis

![Melt Curve Analysis Graph](image)
Non-Sequence Based Haplotype Determination

- Melt curve analysis of amplicons
 - Using the Idaho Technology Light Scanner
 - Redesigned the amplification primers so a smaller amplicon was generated (for the most part less than 200 bp)

- Has worked well for most regions for differentiating haplotypes
 - Can differentiate IIa from IIb
Acknowledgements

• MtDNA genomic sequencing
 – *P. ramorum* and *P. sojae* (Current Genetics 51:285-296)
 • J. Boore, D. Bensasson – JGI, Walnut Creek, CA
 • B. Tyler – VBI, VPI Blacksburg, VA
 – *Pythium* and other *Phytophthora* spp.
 • P. Richardson et al., JGI, Walnut Creek, CA

• Thanks to the USDA-CSREES-NRI Plant Biosecurity Grant Program for supporting this work