The rapid expansion of global trade and human travel has greatly accelerated the introduction of non-endogenous pathogens and pests.

The global climate change influences pathogen communities both directly and indirectly

Sudden Oak Death good example illustrating the challenges we are facing WA MT OR MN WY **★** PA OH 2003 UT IN IL MO ★NC TN OK ★ AZ ★ MS ΤX LA of Garden

Challenge 1

Difficulties in accurately determining species/population identity ->

Accurate determination of species/population identity is critical for risk assessment and the implementation of regulatory measures and appropriate disease control strategies.

Issues in Molecular Identification

- ✓ Molecular identification is not a panacea.
 - Your results may be as good as what you compared with (legacy errors and problems).
 - · Different genes may tell different stories.
- √ What is species?
 - Biological, morphological, and phylogenetic species concepts.
 - They overlap but not perfectly.
- ✓ Biological/geospatial contexts are critical.
 - · Host and geographic origins of new isolates.
 - · Pathological and morphological phenotypes.

Challenge 2

"There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know."

- Donald Rumsfeld -

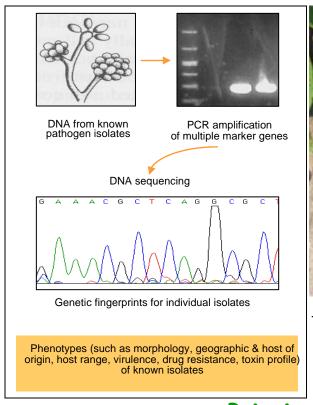
HE PE WASH

Limited understanding of pathogen diversity in nature ->

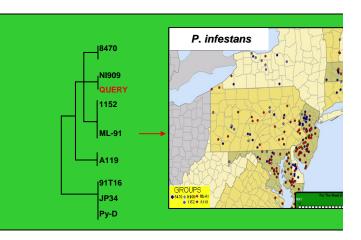
There exist many "known knowns, known unknowns & unknown unknowns" threatening agricultural and ecological systems.

Challenge 3

Limited efforts and mechanisms to support global cooperation and knowledge integration->


Mapping and documenting the diversity, distribution, and biology of major pathogens worldwide and sharing this information are essential to improve our ability to track and manage pathogens.

Issues in Molecular Identification


- ✓ Molecular identification is not a panacea.
 - Your results may be as good as what you compared with (legacy errors and problems).
 - · Different genes may tell different stories.
- √ What is species?
 - Biological, morphological, and phylogenetic species concepts.
 - They overlap but not perfectly.
- ✓ Biological/geospatial contexts are critical.
 - · Host and geographic origins of new isolates.
 - · Pathological and morphological phenotypes.

Phytophthora Database

Cyberinfrastructure supporting identification and monitoring of *Phytophthora* species

www.phytophthoradb.org

Principal Investigators

- Penn State: Seogchan Kang, David Geiser & Izabela Makalowska
- UC-Riverside: Mike Coffey
- North Carolina State University: Kelly Ivors
- USDA-ARS: Frank Martin & Kerry O'Donnell

·Penn State: J. Blair, S. Park, N. Veeraraghavan, M. Mansfield & B. Park

·UC-Riverside: M. Peiman

·NC State: M. Green

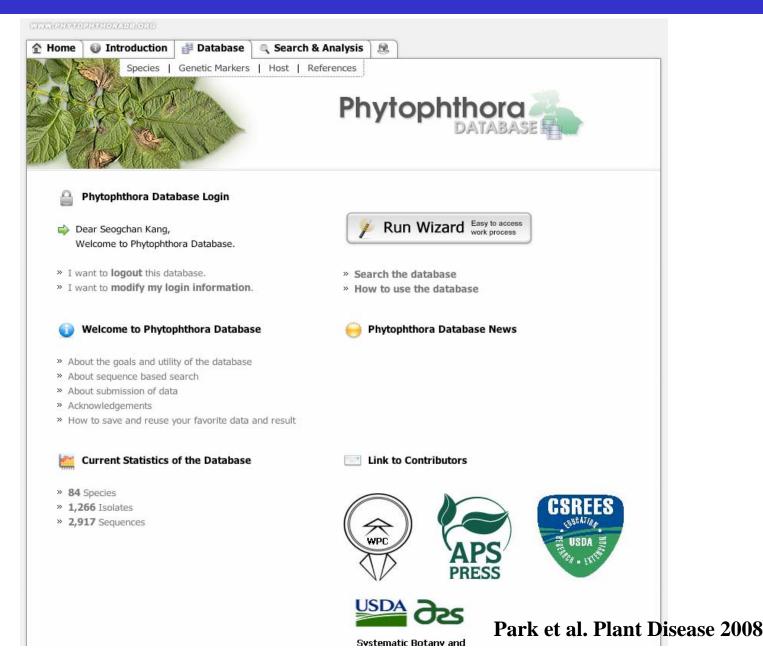
·West Virginia: Y. Balci

·PA Dept of Ag: S. H. Kim & E. Nikolaeva

·Seoul National University: Y. Lee, K. Jung & J. Park

·USDA-ARS SBML: A. Rossman, D. Farr & E. Cline

·APS Press: D. Erwin & O. Ribeiro


Specific Objectives of the PD Project

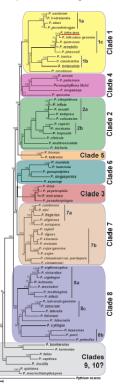
- ✓ To establish a comprehensive phylogenetic framework for the genus *Phytophthora*.
- To build a cyberinfrastructure that archives the genotypes, phenotypes, and distribution of individual *Phytophthora* species/isolates and provides data analysis and visualization tools.
- ✓ To develop and optimize molecular diagnostic tools for detecting and identifying *Phytophthora* species.

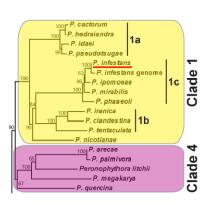
Progress

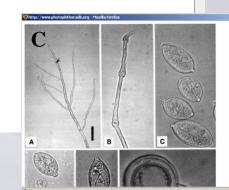
- ✓ Development of new phylogenetic markers based on the genome sequences of *P. ramorum*, *P. capsici*, *P. sojae* and *P. infestans*.
- ✓ Conducted a genus-wide phylogenetic analysis using representative species/isolates.
- √ Genotypic characterization of ~3,000 isolates (>90 species) within the genus.
- ✓ Establishment of the Phytophthora Database.

Organization of the Pytophthora Database

Species Information Page






Phytophthora infestans

Phylogenetic Position within the Genus

This genus-wide phylogenetic tree contains 74 species, including Pythium vexans as the outgroup, and was built using sequences at seven loci (approximately 7700 nucleotides), including 605 Ribosomal Protein L10, Beta Tubulin, Enolase, Heat Shock Protein 90, Large Subunit rRNA, TigA gene fusion, and Translation Elongation Factor 1 alpha (Jaime Blair et al., unpublished data).

Phytophthora indestans (Mont.) de Bary 1876 (Domycetes, Pythiales)

=Botrytis infestans Mont. 1845

- ■Peronospora infestans (Mont.) Casp. 1854
- Botrytis fallax Desm. 1846
- = Peronospora fintelmannii Casp. 1053
- = Butrytis sularii Hanting 1846
- = Phytophthora thalietri G.W. Wilson & Davis 1907
- = Phylophibiora infestans f. sp. thaliotri (G.W. Wilson & Davis) G.M. Waterhouse 1963

= Peronespera trifuncata Unger 1947

Notes: The original name applied to this populate was Gappraena tuberum solani, by Martius, in 1842, After a period of dehate (see Enviri & Ribeiro 1996), it was described by Montagne in 1845 and given the name Bottytis Infestans. It has received much rennwn as the cause of the great Inish potato tamine of the 1840s, and it is the type of the gen is *Phytophthora*. The name *8obyths* devastator (alternate spelling vastator of devastator) Lib. 1845 was published previous to Botryts infestans, and has been listed as a synonym by various authors (e.g. Waterhouse 1963, Erwin & Ribeiro 1996). If this were true, the epithet vastatric would have priurity for this species. Waterhouse (1970) retained the name *Phytophdova infestans*, arguing incurredly that *Bubylis restatric* was an invalid name because it was published in a newspaper, but this is permitted by the Code previous to 1953 (Art. 30.3). While it is in fact valid, Butrytis vastatrix is an illegitimate superfluous name; Libert published it as a replacement name for Butrytis Farinosa Fr.:Fr. 1829. Therefore the name *Bodyte vastatrix* must be typified by *Bodyte farmosa* (≕Fronespera farmosa), and refers to a different species than Abytophthora infestans (Art. 7.4). Distribution: Cosmopolitan.

Substrate: Tubers, leaves, haulins of notate and female. Also stems, thowers, truits, buts on other hosts.

Disease Note: Late blight of potato and tomato. Overwinters in tubers. Several races occur. Also causes leaf blights and, rarely, damping off, flower, and fruit blight in a wide range of hosts.

Host: Principal hosts are Solanaceae including Solanom spp. (potato) and Lycopersicon escularium (tomato). Also occurs on hosts

in 15 other genera and in ten other families (Erwin & Ribeiro 1996).

Gegen ung uterance: Erwin, D.C., and Ribeiro, O.K. 1996. *Phytophthora* Diseases Worldwide. AFS Press, St. Paul, Minnesota, 562 pages. Kruori, L.P.N.M., Bakker, F.T., van den Bosch, G.B.M., Bonants, P.J.M., and Flier, W.G. 2004. Phytogenetic analysis of Phytophthora species based on initiathondrial and nuclear DNS sequences. Fungal Cenet. Biol. 41: 766-782

Putternans, A. 1936. Reivindicacao visando a denominacae scientífica da doerca da bataleira *Phytophthora infestans* (Mont.) de Bary, Rodriguesia 2: 311-350 Stamps, D.I. 1965. *Phytophthoca infestores*. C.M.I. Descript. Pathing. Fungi Bart. 838: 1-2

Tucker, C.M. 1931. Taxonomy of the genus Phytophthora de Bary. Univ. Missouri Agric. Exp. Sta. Bull. 153: 1-208

Updated on May 04, 2006

Characteristics

P. Infestans is classified in group IV (Stamps et al. 1990). See Tables 4.2 and 4.3 for tabular keys and Appendix 4.9 for a dictioturnous key (Hu 1992) in Phytophillura Diseases Worldwide (Erwin and Ribeiro 1996). Morphology is shown in the below and 4.12G. in *Phytophilara* Diseases Worldwide (Erwin and Ribeiro 1996). See Ery et al. (1993) and woker (1991) for photomicrographs of spore structures.

Link to this site in a separate window: http://shopapspress.org/42120.html

Sporangia are ovoid, ellipsoid to limoniform, tapering at the base, cagboous (pedicel <) µm), and semipapillate. Average size of spor angle from 36 × 22 pm (Tuber 1991) to 29 × 19 pm (Materiusse 1993). These dimensions are similar to those of de Bary (18/6), Hosonboum (1917), Haskell (1921), K. O. John (1928), and Leonian and Green (1927). Sporangiophores are rompound sympodial (Figure 4.58 in Phytophthora Diseases Worldwide (Fowin and Ribeim 1996)) with a small characteristic swelling just below the sporangium (Figures 4.5Carld 4.6).

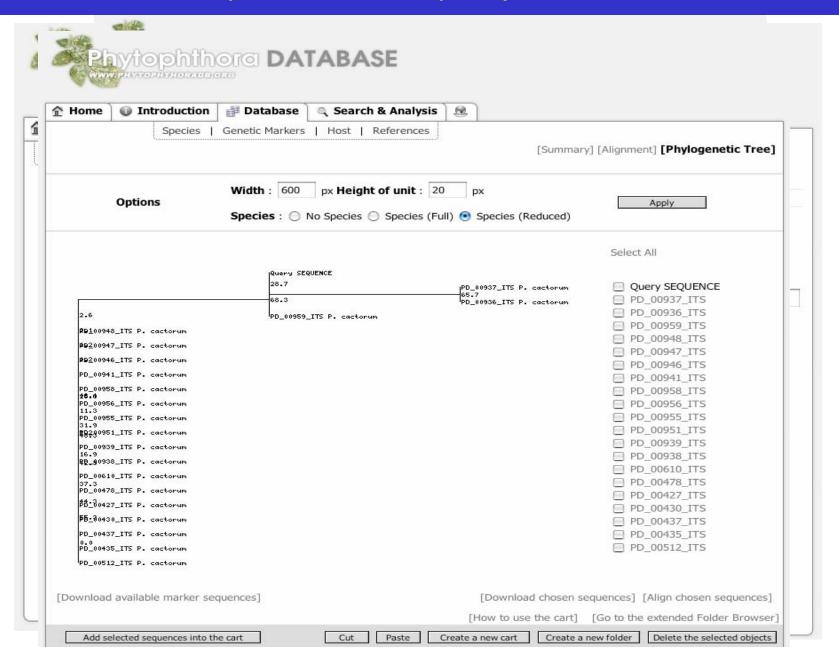
2. Hyphal Swellings and Chiamydospores

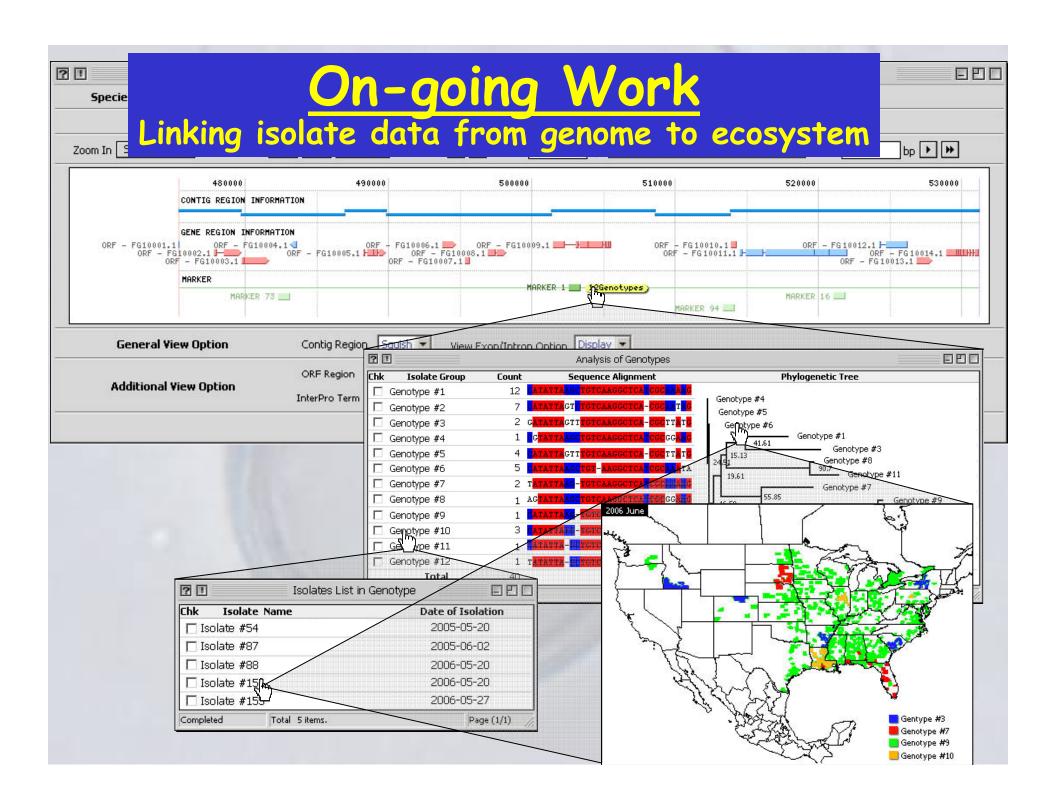
Neither hyphal swellings nor chl ospores have been reported, except in a paper from Russia by Patrikeyeva (1979), who noted chlamydospures with a two-layer wall after incubation for 4 to 9 months on cat-pea against 9 to 10°C.

and the heterotralic. Anthenda are amphygnous; obgania are 31 to 50 µm in diameter (average 38 µm); ocopores formed in wes are aplemitir, 24 to 35 µm in diameter (average 31 µm); in artificial nulture they measure 24 to 56 µm in diameter. Until early 1980s, A1 was the only mating type found in most of the world, but in central Mexico both A1 and A2 isolates coexisted at s 50:50 ratio (Niederhauser 1991). Innoulation of a leaf with an A2 isolate of P. drechsleri and P. infestans (A1) induced cospore production (Skidmore et al. 1984). Whether or not unique biotypes could arise from unrelated species is unknown. Most likely, tormation of cospores results from stimulation by hormonelike substances emitted by the opposite mating type (see Chapter 3 in

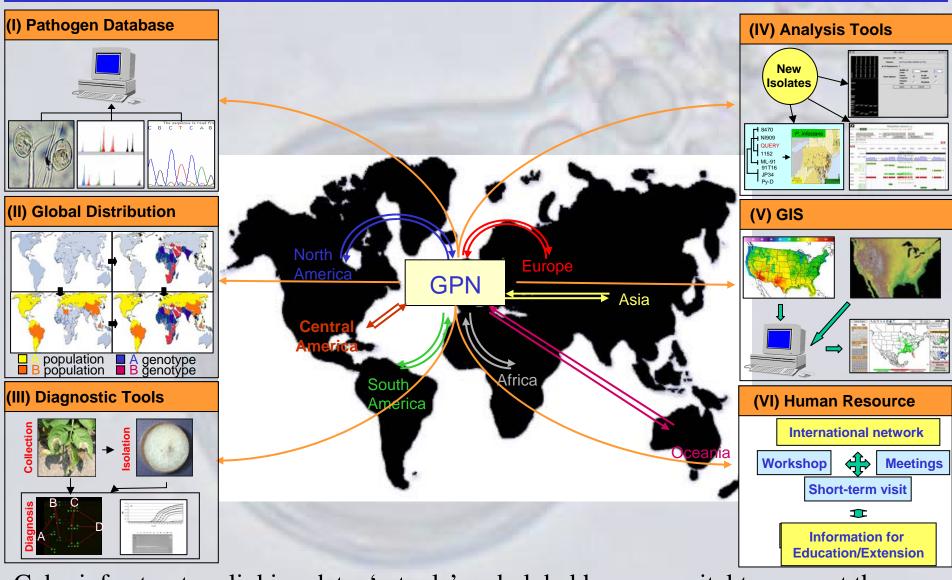

4. Growth Temperatures

The minimum temperature for growth is 4°C, gottmum 20°C, and maximum 26°C.


P. infestaris affects several hosts in the nichtshade familir (Sularaceae). It is a severe pathopen of potato (Sularum toberosum) and tomato (Lycopersicon esculentum) and can lead to 100% crop loss under conditions favorable for disease development and in the



Functionality of the Pytophthora Database



Functionality of the Pytophthora Database

Global Virtual Network of Plant Pathologists

Cyberinfrastructure linking data, 'e-tools' and global human capital to support the management of new or reemerging pathogens.